Skip Navigation

OU Engineering Professor Receives National Science Foundation Early CAREER Award

OU Public Affairs WebsiteOU homepagePublic Affairs homepage
Skip Side Navigation

OU Engineering Professor Receives National Science Foundation Early CAREER Award

Steven P. Crossley

 

3-9-17

FOR IMMEDIATE RELEASE

Contact: Jana Smith, Director
Strategic Communications for R&D
University of Oklahoma
405.325.1322; jana.smith@ou.edu
Follow on Twitter @OUResearch

NORMAN – A University of Oklahoma Gallogly College of Engineering professor, Steven P. Crossley, is the recipient of a five-year, National Science Foundation Early CAREER Award in the amount of $548,829 for research that can be used to understand catalysts that are important for a broad range of chemical reactions ranging from the production of renewable fuels and chemicals for natural gas processing. The research will be integrated with educational and outreach programs intended for American Indian students, emphasizing the importance of sustainable energy.

“The NSF CAREER award is partly in recognition of the important work that Steve has already done in the field of catalysis. It is one of the highest honors a young faculty member can receive. We look forward to him doing great things in the future,” said Brian P. Grady, director of the OU School of Chemical, Biological and Materials Engineering.

Crossley, an assistant professor in the OU School of Chemical, Biological and Materials Engineering, is also a faculty mentor for the American Indian Science and Engineering Society. The project entitled, “SusChEM:CAREER:Using unique synthesis techniques and reaction kinetics to quantify and manipulate catalytically active sites in metal-reducible oxide systems,” will provide a detailed understanding of active sites and atom transfer processes involved in catalytic conversion of bio-oil molecules derived from biomass.

“We are proposing a new method to quantify the role of different catalytically active sites under harsh reaction conditions that are commonly challenging to decouple. Our findings should help to clarify confusion in the literature while providing valuable information necessary for improved catalyst design,” said Crossley.

Biomass conversion processes typically create a broad range of oxygenated intermediates that are treated further by catalytic processes to remove excess oxygen and build longer chain hydrocarbons attractive as fuel components and chemical intermediates. The efficient conversion requires multifunctional catalysts—typically composed of metal and metal oxide active sites—capable of several simultaneous or sequential reaction steps. While it is well understood that different types of active sites are required for different reactions, the exact nature of those sites and their ideal proximity is not known.

This study will examine those factors by decoupling metal sites from reducible metal oxide sites using carbon nanotube bridges as hydrogen shuttles. By eliminating direct contact between the metal and metal oxide components, and by varying the metal-metal oxide spacing along the carbon nanotubes, the study will provide an opportunity to examine independently two important aspects of bifunctional catalysis on reducible metal oxides: metal-support interactions and hydrogen spillover effects vary with different types of molecules common to biomass deconstruction processes. For more information on the study, contact Crossley at stevencrossley@ou.edu.

Recent News

OU Student Receives Udall Scholarship

Daniel Hayden

NORMAN - University of Oklahoma honors student Daniel R. Hayden has been named a 2018 Udall Scholar. The Udall Foundation Scholarship recognizes undergraduate students who demonstrate a commitment to careers related to the environment or to Native American public policy or health care. Hayden is one of 50 nationwide selected for the honor. Read more

OU Professor to Receive IEEE Satellite Communications Technical Contribution Award

Mohammed Atiquzzaman

Mohammed Atiquzzaman, is the recipient of the prestigious Institute of Electrical and Electronics Engineers Satellite Communications Technical Contribution Award for 2018. The annual award is given to an accomplished, senior-level researcher who has achieved outstanding results in satellite communications and recognizes excellent scientific contributions done by academia and industries. Atiquzzaman will receive the award at the IEEE International Conference on Communications in Kansas City, Missouri, May 20-24. Read more

OU Physicist Developing Quantum-Enhanced Sensors for Real-Life Applications

Albert Marino

A University of Oklahoma physicist, Alberto M. Marino, is developing quantum-enhanced sensors that could find their way into applications ranging from biomedical to chemical detection. In a new study, Marino’s team, in collaboration with the U.S. Department of Energy’s Oak Ridge National Laboratory, demonstrates the ability of quantum states of light to enhance the sensitivities of state-of-the-art plasmonic sensors. The team presents the first implementation of a sensor with sensitivities considered state-of-the-art and shows how quantum-enhanced sensing can find its way into real-life applications. Read more

OU Class of 2018 Gift to Honor Borens

The Boren Green

NORMAN – The University of Oklahoma Class of 2018 will celebrate their time at OU through a dedicated green space that will add to OU’s national reputation as one of America’s most beautiful campuses. Located along Lindsey Street in front of the newly completed Residential Colleges, this year’s class gift will fund a picturesque lawn named The Boren Green. Read more

OU Students Receive National Security Education Program Award for International Study

The Boren Awards

NORMAN – University of Oklahoma senior James Ratcliff and OU junior Libby Trowbridge recently were selected as recipients of the prestigious Boren Award for International Study, sponsored by the National Security Education Program. Thirty-four OU students have received the award since the program began in 1994. Read more

OU-Led Research Team Accelerating Antibiotic Discovery

Zygurskaya and Rybenkov

NORMAN — University of Oklahoma professors, Helen Zgurskaya and Valentin Rybenkov, and team are addressing the challenge and critical need for new antibiotics that can fight infections caused by the multi-drug resistant bacterium, Pseudomonas aeruginosa, considered an urgent threat by the Centers for Disease Control and Prevention. The OU team responded to a special request for applications from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and received a five-year, $5.7 million grant to develop new, more effective approaches against Gram-negative bacteria that are protected by multi-drug efflux pumps and low-permeability membranes. Read more

News Archives

2017  | 2016  | 2015  | 2014  |  2013  

May 2018

April 2018

March 2018


For requests for past releases, please contact OU Public Affairs at (405) 325-1701 or publicaffairs@ou.edu.